Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.776
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731935

RESUMO

Cancer treatment is greatly challenged by drug resistance, highlighting the need for novel drug discoveries. Here, we investigated novel organoarsenic compounds regarding their resistance-breaking and apoptosis-inducing properties in leukemia and lymphoma. Notably, the compound (2,6-dimethylphenyl)arsonic acid (As2) demonstrated significant inhibition of cell proliferation and induction of apoptosis in leukemia and lymphoma cells while sparing healthy leukocytes. As2 reached half of its maximum activity (AC50) against leukemia cells at around 6.3 µM. Further experiments showed that As2 overcomes multidrug resistance and sensitizes drug-resistant leukemia and lymphoma cell lines to treatments with the common cytostatic drugs vincristine, daunorubicin, and cytarabine at low micromolar concentrations. Mechanistic investigations of As2-mediated apoptosis involving FADD (FAS-associated death domain)-deficient or Smac (second mitochondria-derived activator of caspases)/DIABLO (direct IAP binding protein with low pI)-overexpressing cell lines, western blot analysis of caspase-9 cleavage, and measurements of mitochondrial membrane integrity identified the mitochondrial apoptosis pathway as the main mode of action. Downregulation of XIAP (x-linked inhibitor of apoptosis protein) and apoptosis induction independent of Bcl-2 (B-cell lymphoma 2) and caspase-3 expression levels suggest the activation of additional apoptosis-promoting mechanisms. Due to the selective apoptosis induction, the synergistic effects with common anti-cancer drugs, and the ability to overcome multidrug resistance in vitro, As2 represents a promising candidate for further preclinical investigations with respect to refractory malignancies.


Assuntos
Apoptose , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Leucemia , Linfoma , Mitocôndrias , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Linfoma/patologia , Leucemia/metabolismo , Leucemia/tratamento farmacológico , Leucemia/patologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citostáticos/farmacologia , Antineoplásicos/farmacologia
2.
Clin Lab ; 70(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38747920

RESUMO

BACKGROUND: The aim of the study was to improve the clinical cognition of leukemia-like reaction caused by voriconazole and granulocyte colony-stimulating factor and to avoid misdiagnosis or delayed diagnosis. METHODS: A case of drug analysis of Voriconazole combined with granulocyte colony stimulating factor was retrospectively analyzed and related literature was reviewed. RESULTS: Blood routine of the patient on July 29: WBC 13.48 x 109/L, neutrophil 85.3%, lymphocyte 13.4%, hemoglobin 111 g/L, platelet 285 x 109/L. Vancomycin was given to prevent intracranial infection. Lumbar puncture was performed on July 30, cerebrospinal fluid was sent for routine and biochemical examination, leukocytes were 0.15 x 109/L, monocytes 45%, polynuclear cells 55%, protein 1.172 g/L, Acinetobacter baumannii and Candida clorbicus were detected in sputum culture, vancomycin and meropenem static sites were given to prevent intracranial secondary infection. Fungi were detected in urine culture, and voriconazole was given to prevent fungal infection. Blood routine: White blood cell 0.61 x 109/L, neutrophil 23%, lymphocyte 73.8%, red blood cell 2.65 x 1012/L, hemoglobin 77 g/L, platelet 17 x 109/L, bone marrow was extracted after medication. Bone marrow images show poor myelodysplasia, with granulocytes dominated by protoearly cells. Subsequent flow cytometry, chromosomal karyotype, and fusion gene analysis were performed to exclude the possibility of leukemia. Flow cytometry showed that the proportion of myeloid primordial cells was not high, the granulocytes were mainly at the early and young stage, no abnormal phenotype was observed in erythrocytes, monocytes and NK cells, no obvious mature B lymphocytes were observed, and the ratio of CD4+/CD8+ was decreased. Karyotype results showed that there was no mitotic phase. The results of fusion gene analysis showed that the fusion gene was negative or lower than the detection sensitivity. Voliconazole was stopped first, and granulocyte colony stimulating factor was stopped 3 days later. Two weeks later, blood and bone marrow images basically recovered, white blood cell 7.88 x 109/L, neutrophil 46.3%, lymphocyte 48.2%, hemoglobin 126 g/L, platelet 142 x 109/L, bone marrow hyperplasia active. The proportion of three series is roughly normal. CONCLUSIONS: The reason for the occurrence of leukemia-like reaction in this patient was considered to be related to voriconazole and granulocyte colony stimulating factor, cessation of voriconazole and granulocyte colony stimulating factor, and recovery of blood and bone marrow images. In the clinical use of voriconazole and granulocyte colony stimulating factor, close attention should be paid to the drug interaction and individualized medication should be carried out to ensure the safety of medication.


Assuntos
Antifúngicos , Fator Estimulador de Colônias de Granulócitos , Voriconazol , Humanos , Voriconazol/uso terapêutico , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Feminino , Leucemia/tratamento farmacológico
4.
Nat Prod Res ; 38(11): 1956-1960, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739565

RESUMO

Magonia pubescens is a natural species from the Brazilian cerrado biome. Its fruits and seeds are used in the treatment of seborrheic dermatitis, a common inflammatory skin disease. In this work, the known compounds lapachol, stigmasterol, maniladiol and scopoletin were isolated from hexane and dichloromethane extracts of M. pubescens branches. The aqueous extract of this material was fractioned through a liquid-liquid partition and the obtained fractions were analyzed by UHPLC-MS/MS. The results obtained were compared with data from three databases, leading to the putative identification of 51 compounds from different classes, including flavonoids, saponins and triterpenes. The cytotoxicity of aqueous fractions was assayed against breast cancer (MDA-MB-231) and leukemia (THP-1 and K562) cells. The best activity was observed for fraction AE3 against MDA-MB-231 cells (IC50 30.72 µg.mL-1).


Assuntos
Antineoplásicos Fitogênicos , Neoplasias da Mama , Compostos Fitoquímicos , Extratos Vegetais , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Feminino , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Triterpenos/farmacologia , Triterpenos/química , Brasil , Leucemia/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/química , Células K562 , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Saponinas/farmacologia , Saponinas/química , Células THP-1 , Estrutura Molecular
5.
Cancer Cell ; 42(4): 552-567.e6, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593781

RESUMO

Leukemia can arise at various stages of the hematopoietic differentiation hierarchy, but the impact of developmental arrest on drug sensitivity is unclear. Applying network-based analyses to single-cell transcriptomes of human B cells, we define genome-wide signaling circuitry for each B cell differentiation stage. Using this reference, we comprehensively map the developmental states of B cell acute lymphoblastic leukemia (B-ALL), revealing its strong correlation with sensitivity to asparaginase, a commonly used chemotherapeutic agent. Single-cell multi-omics analyses of primary B-ALL blasts reveal marked intra-leukemia heterogeneity in asparaginase response: resistance is linked to pre-pro-B-like cells, with sensitivity associated with the pro-B-like population. By targeting BCL2, a driver within the pre-pro-B-like cell signaling network, we find that venetoclax significantly potentiates asparaginase efficacy in vitro and in vivo. These findings demonstrate a single-cell systems pharmacology framework to predict effective combination therapies based on intra-leukemia heterogeneity in developmental state, with potentially broad applications beyond B-ALL.


Assuntos
Leucemia , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Asparaginase/farmacologia , Farmacologia em Rede , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Transdução de Sinais , Leucemia/tratamento farmacológico
6.
Front Biosci (Landmark Ed) ; 29(4): 162, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38682177

RESUMO

BACKGROUND AND OBJECTIVE: There is a growing need to comprehend the potential outcomes of nanoparticles (NPs) on human well-being, including their potential for detecting and treating leukemia. This study examined the role of iron folate core-shell and iron oxide nanoparticles in inducing apoptosis and altering the expression of the B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X-protein (Bax), and Caspase-3 genes in leukemia cells. METHODS: The obtained iron oxide and iron folate core-shell nanoparticles were analyzed using a variety of analytical techniques, including ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, and transmission electron microscopy (TEM). Additionally, FTIR and UV-Vis were used to characterize doxorubicin. The MTT test was utilized to investigate the cytotoxicity of iron oxide and iron folate core-shell nanoparticles. The expression of the apoptotic signaling proteins Bcl-2, Bax, and Caspase-3 was evaluated using the real-time reverse transcription polymerase chain reaction (RT-qPCR) method. Additionally, flow cytometry was performed to gauge the degrees of necrosis and apoptosis. RESULTS: UV-Visible spectroscopy analysis showed that the generated iron oxide and iron folate core-shell NPs had a distinctive absorption curve in the 250-300 nm wavelength range. The XRD peaks were also discovered to index the spherical form with a size of less than 50 nm, which validated the crystal structure. The FTIR analysis determined the bonds and functional groups at wavenumbers between 400 and 4000 cm-1. A viable leukemia treatment approach is a nanocomposite consisting of iron and an iron folate core-shell necessary for inhibiting and activating cancer cell death. The nearly resistant apoptosis in the CCRF-CEM cells may have resulted from upregulating Bax and Casepase-3 while downregulating Bcl-2 expression. CONCLUSIONS: Our study documents the successful synthetization and characterization of iron oxide, which has excellent anticancer activities. A metal oxide conjugation with the nanoparticles' core-shell enhanced the effect against acute leukemia.


Assuntos
Apoptose , Ácido Fólico , Humanos , Ácido Fólico/química , Ácido Fólico/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Caspase 3/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/química , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/química , Compostos Férricos/química
7.
Med Oncol ; 41(5): 113, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602586

RESUMO

Leukemia is a malignant disease of the hematopoietic system, in which clonal leukemia cells accumulate and inhibit normal hematopoiesis in the bone marrow and other hematopoietic tissues as a result of uncontrolled proliferation and impaired apoptosis, among other mechanisms. In this study, the anti-leukemic effect of a compound (SGP-17-S) extracted from Chloranthus multistachys, a plant with anti-inflammatory, antibacterial and anti-tumor effects, was evaluated. The effect of SGP-17-S on the viability of leukemic cell was demonstrated by MTT assay, cell cycle, and apoptosis were assessed by flow cytometry using PI staining and Annexin V/PI double staining. Combinations of network pharmacology and cellular thermal shift assay (CETSA) with western blot were used to validate agents that act on leukemia targets. The results showed that SGP-17-S inhibited the growth of leukemia cells in a time- and dose-dependent manner. SGP-17-S blocked HEL cells in the G2 phase, induced apoptosis, decreased Bcl-2 and caspase-8 protein expression, and increased Bax and caspase-3 expression. In addition, CETSA revealed that PARP1 is an important target gene for the inhibition of HEL cell growth, and SGP-17-S exerted its action on leukemia cells by targeting PARP1. Therefore, this study might provide new solutions and ideas for the treatment of leukemia.


Assuntos
Leucemia , Humanos , Leucemia/tratamento farmacológico , Ciclo Celular , Proliferação de Células , Divisão Celular , Anexina A5 , Poli(ADP-Ribose) Polimerase-1
8.
Eur J Med Res ; 29(1): 224, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594732

RESUMO

The latest findings in iron metabolism and the newly uncovered process of ferroptosis have paved the way for new potential strategies in anti-leukemia treatments. In the current project, we reviewed and summarized the current role of nanomedicine in the treatment and diagnosis of leukemia through a comparison made between traditional approaches applied in the treatment and diagnosis of leukemia via the existing investigations about the ferroptosis molecular mechanisms involved in various anti-tumor treatments. The application of nanotechnology and other novel technologies may provide a new direction in ferroptosis-driven leukemia therapies. The article explores the potential of targeting ferroptosis, a new form of regulated cell death, as a new therapeutic strategy for leukemia. It discusses the mechanisms of ferroptosis and its role in leukemia and how nanotechnology can enhance the delivery and efficacy of ferroptosis-inducing agents. The article not only highlights the promise of ferroptosis-targeted therapies and nanotechnology in revolutionizing leukemia treatment, but also calls for further research to overcome challenges and fully realize the clinical potential of this innovative approach. Finally, it discusses the challenges and opportunities in clinical applications of ferroptosis.


Assuntos
Ferroptose , Leucemia , Humanos , Nanotecnologia , Leucemia/tratamento farmacológico
9.
Sci Rep ; 14(1): 9940, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688930

RESUMO

Dexamethasone (DEX) is a synthetic analogue of cortisol commonly used for the treatment of different pathological conditions, comprising cancer, ocular disorders, and COVID-19 infection. Its clinical use is hampered by the low solubility and severe side effects due to its systemic administration. The capability of peptide-based nanosystems, like hydrogels (HGs) and nanogels (NGs), to serve as vehicles for the passive targeting of active pharmaceutical ingredients and the selective internalization into leukemic cells has here been demonstrated. Peptide based HGs loaded with DEX were formulated via the "solvent-switch" method, using Fmoc-FF homopeptide as building block. Due to the tight interaction of the drug with the peptidic matrix, a significant stiffening of the gel (G' = 67.9 kPa) was observed. The corresponding injectable NGs, obtained from the sub-micronization of the HG, in the presence of two stabilizing agents (SPAN®60 and TWEEN®60, 48/52 w/w), were found to be stable up to 90 days, with a mean diameter of 105 nm. NGs do not exhibit hemolytic effects on human serum, moreover they are selectively internalized by RS4;11 leukemic cells over healthy PBMCs, paving the way for the generation of new diagnostic strategies targeting onco-hematological diseases.


Assuntos
Dexametasona , Hidrogéis , Leucemia , Nanogéis , Dexametasona/administração & dosagem , Humanos , Hidrogéis/química , Nanogéis/química , Leucemia/tratamento farmacológico , Leucemia/diagnóstico , Leucemia/patologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos
10.
Bioorg Chem ; 146: 107284, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493640

RESUMO

Based on the well-established pharmacophoric features required for histone deacetylase (HDAC) inhibition, a novel series of easy-to-synthesize benzimidazole-linked (thio)hydantoin derivatives was designed and synthesized as HDAC6 inhibitors. All target compounds potently inhibited HDAC6 at nanomolar levels with compounds 2c, 2d, 4b and 4c (IC50s = 51.84-74.36 nM) being more potent than SAHA reference drug (IC50 = 91.73 nM). Additionally, the most potent derivatives were further assessed for their in vitro cytotoxic activity against two human leukemia cells. Hydantoin derivative 4c was equipotent/superior to SAHA against MOLT-4/CCRF-CEM leukemia cells, respectively and demonstrated safety profile better than that of SAHA against non-cancerous human cells. 4c was also screened against different HDAC isoforms. 4c was superior to SAHA against HDAC1. Cell-based assessment of 4c revealed a significant cell cycle arrest and apoptosis induction. Moreover, western blotting analysis showed increased levels of acetylated histone H3, histone H4 and α-tubulin in CCRF-CEM cells. Furthermore, docking study exposed the ability of title compounds to chelate Zn2+ located within HDAC6 active site. As well, in-silico evaluation of physicochemical properties showed that target compounds are promising candidates in terms of pharmacokinetic aspects.


Assuntos
Antineoplásicos , Hidantoínas , Leucemia , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Histonas/metabolismo , Hidantoínas/farmacologia , Leucemia/tratamento farmacológico , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Zinco/metabolismo , Benzimidazóis/química , Benzimidazóis/farmacologia
11.
Support Care Cancer ; 32(3): 207, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436749

RESUMO

PURPOSE: Children with leukemia may experience a range of chemotherapy-related symptoms. Identifying subgroups and their distinct characteristics of symptoms may improve symptom management. We aimed to identify subgroups and their distinct characteristics of chemotherapy-related symptoms in children with leukemia. METHODS: A cross-sectional survey was conducted among 500 children with leukemia, who completed questionnaires that assessed their demographic and clinical characteristics, as well as the Memorial Symptom Assessment Scale. Latent profile analysis was conducted to identify subgroups of symptoms. Additionally, multiple regression analysis and network analysis were utilized to reveal the characteristics of each subgroup. RESULTS: Four subgroups were identified: "Profile 1: low symptom burden subgroup" (26.2%), "Profile 2: moderate symptom burden subgroup in transitional period" (14.8%), "Profile 3: moderate psychological symptom burden subgroup" (35.6%), and "Profile 4: high symptom burden subgroup" (23.4%). Multiple logistic regression analysis indicated that lower primary caregiver's education level, lower family monthly income, self-paid medical expenses, induction remission period, and consolidation enhancement period were associated with more severe symptoms of subgroups. Network analysis further revealed that nausea was the core symptom in Profiles 1 and 2, while the core symptom in Profile 3 was "I don't look like myself." Additionally, worrying was the core symptom in Profile 4. CONCLUSION: There exists heterogeneity in chemotherapy-related symptoms. Four subgroups and their corresponding characteristics of children with varying symptom severity were identified. Identifying these subgroups will facilitate personalized care, maximize intervention effectiveness, and alleviate symptom burden.


Assuntos
Leucemia , Criança , Humanos , Estudos Transversais , Leucemia/tratamento farmacológico , Escolaridade , Renda , Náusea
12.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542061

RESUMO

Naphthylisoquinoline (NIQ) alkaloids are rising as a promising class of secondary metabolites with pharmaceutical potential. NF-κB has already been recognized as a significant modulator of cancer proliferation and drug resistance. We have previously reported the mechanisms behind the cytotoxic effect of dioncophylline A, an NIQ monomer, in leukemia cells. In the current study, we have investigated the cytotoxic effect of jozimine A2, an NIQ dimer, on leukemia cells in comparison to a second, structurally unsymmetric dimer, michellamine B. To this end, molecular docking was applied to predict the binding affinity of the dimers towards NF-κB, which was then validated through microscale thermophoresis. Next, cytotoxicity assays were performed on CCRF-CEM cells and multidrug-resistant CEM/ADR5000 cells following treatment. Transcriptome analysis uncovered the molecular networks affected by jozimine A2 and identified the cell cycle as one of the major affected processes. Cell death modes were evaluated through flow cytometry, while angiogenesis was measured with the endothelial cell tube formation assay on human umbilical vein endothelial cells (HUVECs). The results indicated that jozimine A2 bound to NF-κB, inhibited its activity and prevented its translocation to the nucleus. In addition, jozimine A2 induced cell death through apoptosis and prevented angiogenesis. Our study describes the cytotoxic effect of jozimine A2 on leukemia cells and explains the interactions with the NF-κB signaling pathway and the anticancer activity.


Assuntos
Alcaloides , Antineoplásicos , Leucemia , Humanos , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Células Endoteliais , Leucemia/tratamento farmacológico , Simulação de Acoplamento Molecular , NF-kappa B/farmacologia
13.
Cell Death Differ ; 31(4): 405-416, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538744

RESUMO

BH3 mimetics, including the BCL2/BCLXL/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLXL inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors. Cell fractionation and phosphoproteomic analyses suggest that sensitization by dorsomorphin involves dephosphorylation of the proapoptotic BCL2 family member BAD at Ser75 and Ser99, leading BAD to translocate to mitochondria and inhibit BCLXL. Consistent with these results, BAD knockout or mutation to BAD S75E/S99E abolishes the sensitizing effects of dorsomorphin. Conversely, dorsomorphin synergizes with navitoclax or the MCL1 inhibitor S63845 to induce cell death in primary acute leukemia samples ex vivo and increases the antitumor effects of navitoclax or S63845 in several xenograft models in vivo with little or no increase in toxicity in normal tissues. These results suggest that AMPK inhibition can sensitize acute leukemia to multiple BH3 mimetics, potentially allowing administration of lower doses while inducing similar antineoplastic effects.


Assuntos
Proteínas Quinases Ativadas por AMP , Compostos de Anilina , Proteína de Sequência 1 de Leucemia de Células Mieloides , Pirimidinas , Sulfonamidas , Proteína bcl-X , Humanos , Animais , Compostos de Anilina/farmacologia , Sulfonamidas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Proteína bcl-X/metabolismo , Proteína bcl-X/antagonistas & inibidores , Linhagem Celular Tumoral , Pirimidinas/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Pirazóis/farmacologia , Proteína de Morte Celular Associada a bcl/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Leucemia/tratamento farmacológico , Leucemia/patologia , Leucemia/metabolismo , Fosforilação/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Sinergismo Farmacológico
14.
Int J Pharm ; 654: 123971, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38452832

RESUMO

Lymphoma and leukemia are both hematological system tumors with complex etiology, and mainly treated with chemotherapeutic drugs. However, therapeutic drugs can interrupt curative effect due to different side effects. Therefore, it is worthwhile to develop a novel therapeutic for providing insights for clinical tumor treatment. In this study, we developed a fisetin nanoparticles (Fisetin NPs) through a self-assembled method, and investigated the activity and potential mechanism of Fisetin NPs against lymphoma and leukemia. The spherical and uniformly distributed Fisetin NPs effectively inhibited both tumor cells proliferation, arrested EL4 cells G0/G1 phase and K562 cells G2/M phase, and induced apoptosis in vitro. In vivo, Fisetin NPs exhibited excellent tumor growth inhibition, effective inhibition of cell proliferation and angiogenesis, significant induction of apoptosis and ideal safety. Mechanically, fisetin upregulated genes (Fas, Pidd, Puma, Apaf1, and p21) in the p53 signaling pathway and bound to N-acetyltransferase 10 (NAT10), ribosomal protein L34 (RPL34) and GTP binding protein 4 (GTPBP4). Collectively, Fisetin NPs have promising therapeutic effects on lymphoma and leukemia, which are of great significant for clinical implications.


Assuntos
Leucemia , Linfoma , Humanos , Flavonoides/farmacologia , Flavonóis/farmacologia , Apoptose , Proliferação de Células , Leucemia/tratamento farmacológico , Linfoma/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas Nucleares/farmacologia , Proteínas de Ligação ao GTP/farmacologia , Acetiltransferases N-Terminal
15.
Exp Hematol ; 133: 104212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552942

RESUMO

Extensive research over the past 50 years has resulted in significant improvements in survival for patients diagnosed with leukemia. Despite this, a subgroup of patients harboring high-risk genetic alterations still suffer from poor outcomes. There is a desperate need for new treatments to improve survival, yet consistent failure exists in the translation of in vitro drug development to clinical application. Preclinical screening conventionally utilizes tumor cell monocultures to assess drug activity; however, emerging research has acknowledged the vital role of the tumor microenvironment in treatment resistance and disease relapse. Current co-culture drug screening methods frequently employ fibroblasts as the designated stromal cell component. Alternative stromal cell types that are known to contribute to chemoresistance are often absent in preclinical evaluations of drug efficacy. This review highlights mechanisms of chemoresistance by a range of different stromal constituents present in the bone marrow microenvironment. Utilizing an array of stromal cell types at the early stages of drug screening may enhance the translation of in vitro drug development to clinical use. Ultimately, we highlight the need to consider the bone marrow microenvironment in drug screening platforms for leukemia to develop superior therapies for the treatment of high-risk patients with poor prognostic outcomes.


Assuntos
Leucemia , Microambiente Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Leucemia/patologia , Leucemia/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Animais , Medula Óssea/patologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Células Estromais/patologia , Células Estromais/metabolismo , Células Estromais/efeitos dos fármacos , Técnicas de Cocultura , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia
16.
Cell Commun Signal ; 22(1): 105, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331801

RESUMO

The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.


Assuntos
Neoplasias Hematológicas , Leucemia , Linfoma , Humanos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , NF-kappa B/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Leucemia/tratamento farmacológico , Linfoma/tratamento farmacológico , Apoptose
17.
Eur J Med Chem ; 268: 116226, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367493

RESUMO

To interfere the Menin-MLL interaction using small molecular inhibitors has been shown as new treatment of several special hematological malignancies. Herein, a series of Menin-MLL interaction inhibitors with pyrrolo[2,3-d]pyrimidine scaffold were designed, synthesized and evaluated. Among them, compound A6 exhibited potent binding affinity with an IC50 value of 0.38 µM, and strong anti-proliferative activity against MV4-11 cells with an IC50 value of 1.07 µM. Further study showed A6 reduced the transcriptional levels of HOXA9 and MEIS1 genes. Moreover, A6 induced cellular apoptosis, arrested the cell cycle in G0/G1 phase, and reversed the differentiation arrest in a concentration-dependent manner. This study suggested compound A6 was as a novel potent Menin-MLL interaction inhibitor, and it proved that introduction of 4-amino pyrrolo[2,3-d]pyrimidine to occupy the P10 hydrophobic pocket was new idea for design of novel Menin-MLL interaction inhibitors.


Assuntos
Leucemia , Proteína de Leucina Linfoide-Mieloide , Humanos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia/tratamento farmacológico , Pirimidinas/farmacologia
18.
Sci Adv ; 10(8): eadk3127, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394203

RESUMO

Epigenetic dysregulation has been reported in multiple cancers including leukemias. Nonetheless, the roles of the epigenetic reader Tudor domains in leukemia progression and therapy remain unexplored. Here, we conducted a Tudor domain-focused CRISPR screen and identified SGF29, a component of SAGA/ATAC acetyltransferase complexes, as a crucial factor for H3K9 acetylation, ribosomal gene expression, and leukemogenesis. To facilitate drug development, we integrated the CRISPR tiling scan with compound docking and molecular dynamics simulation, presenting a generally applicable strategy called CRISPR-Scan Assisted Drug Discovery (CRISPR-SADD). Using this approach, we identified a lead inhibitor that selectively targets SGF29's Tudor domain and demonstrates efficacy against leukemia. Furthermore, we propose that the structural genetics approach used in our study can be widely applied to diverse fields for de novo drug discovery.


Assuntos
Leucemia , Domínio Tudor , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Acetiltransferases/metabolismo , Descoberta de Drogas , Leucemia/tratamento farmacológico , Leucemia/genética
19.
Anticancer Res ; 44(3): 981-991, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423659

RESUMO

BACKGROUND/AIM: Methionine metabolism contributes to supplying sulfur-containing amino acids, controlling the methyl group transfer reaction, and producing polyamines in cancer cells. Polyamines play important roles in various cellular functions. Methylthioadenosine phosphorylase (MTAP), the key enzyme of the methionine salvage pathway, is reported to be deficient in 15-62% of cases of hematological malignancies. MTAP-deficient cancer cells accumulate polyamines, resulting in enhanced cell proliferation. The aim of this study was to investigate the combined effects of the polyamine synthesis inhibitor SAM486A and the anticancer antimetabolite cytarabine in MTAP-deficient leukemic cells in vitro. MATERIALS AND METHODS: The leukemia cell line U937 and the subline, U937/MTAP(-), in which MTAP was knocked down by shRNA, were used. The experiments were performed in media supplemented with 20% methionine (low methionine), which was the minimum concentration for maintaining cellular viability. RESULTS: The knockdown efficiency test confirmed a 70% suppression of the expression of the MTAP gene in U937/MTAP(-) cells. Even in the media with low methionine, the intracellular methionine concentration was not reduced in U937/MTAP(-) cells, suggesting that the minimum supply of methionine was sufficient to maintain intracellular levels of methionine. Both U937/MTAP(+) and U937/MTAP(-) cells were comparably sensitive to anticancer drugs (cytarabine, methotrexate, clofarabine and 6-thioguanine). The combination of SAM486A and cytarabine was demonstrated to have synergistic cytotoxicity in U937/MTAP(-) cells with regard to cell growth inhibition and apoptosis induction, but not in U937/MTAP(+) cells. Mechanistically, SAM486A altered the intracellular polyamine concentrations and reduced the antiapoptotic proteins. CONCLUSION: Methionine metabolism and polyamine synthesis can be attractive therapeutic targets in leukemia.


Assuntos
Amidinas , Antineoplásicos , Indanos , Leucemia , Humanos , Citarabina/farmacologia , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Poliaminas , Metionina/farmacologia , Metionina/metabolismo , Leucemia/tratamento farmacológico
20.
J Ethnopharmacol ; 325: 117847, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38307357

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. has been used in traditional Russian medicine due to its recognized immunostimulant and anti-inflammatory activities. Compounds present in the fruits have demonstrated the capability to modulate the activity of enzymes such as hyaluronidase, suggesting their potential value in the development of effective therapies for various conditions where anti-inflammatory properties are beneficial, such as gastrointestinal diseases and tumor growth. AIM OF THE STUDY: In order to support the use of the fruits in folk medicine, this study is aimed to evaluate, post-mortem, the impact of E. senticosus fruits intractum (40 % extract made from fresh fruits) on the transepithelial electrogenic transport of sodium ions in the colon. The objective of this study was also to examine the impact of the intractum on proinflammatory serum hyaluronidase in children diagnosed with acute leukemia. METHODS: The study employed the Ussing technique to examine electrophysiological characteristics of isolated epithelial tissue, using the distal colon wall isolated from 10 New Zealand white male rabbits. The effect of the intractum on the inhibition of human serum hyaluronidase was examined with turbidimetric screening methods, using the blood samples collected from patients diagnosed with acute leukemia. RESULTS: For the first time, we discovered that the intractum used in the stimulation fluid, caused hyperpolarization reactions in colon tissue. Statistical analysis showed that these reactions were significantly different in relation to the control. The intractum significantly inhibited hyaluronidase activity with the mean value by group of 60 %, and 40 % for aescin used as a control. CONCLUSION: The results support the traditional use of the fruits in inflammatory-related diseases. The use of intractum of E. senticosus on the distal colon wall demonstrates its protective effect on the wall integrity and in a relation to hyaluronidase inhibition may additionally indicate its anti-inflammatory property. Thus, the results mean that the intractum may be used in colon-related diseases.


Assuntos
Eleutherococcus , Leucemia , Criança , Humanos , Masculino , Coelhos , Animais , Extratos Vegetais/uso terapêutico , Frutas/química , Hialuronoglucosaminidase , Intestino Grosso , Leucemia/tratamento farmacológico , Anti-Inflamatórios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA